Surrogate losses for cost-sensitive classification with example-dependent costs
نویسنده
چکیده
We study surrogate losses in the context of cost-sensitive classification with example-dependent costs, a problem also known as regression level set estimation. We give sufficient conditions on the surrogate loss for the existence of a surrogate regret bound. Such bounds imply that as the surrogate risk tends to its optimal value, so too does the expected misclassification cost. These kinds of bounds are not only intuitively natural requirements of the surrogate loss, but have also emerged in recent years as critical tools when proving consistency of algorithms based on surrogate losses. Our sufficient conditions encompass example-dependent versions of the hinge, exponential, and other common losses. These results provide theoretical justification for some previously proposed surrogate-based algorithms, and suggests others that have not yet been developed.
منابع مشابه
Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs
We study surrogate losses in the context of cost-sensitive classification with exampledependent costs, a problem also known as regression level set estimation. We give sufficient conditions on the surrogate loss for the existence of a surrogate regret bound. Such bounds imply that as the surrogate risk tends to its optimal value, so too does the expected misclassification cost. Our sufficient c...
متن کاملCalibrated Surrogate Losses for Classification with Label-Dependent Costs
We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier’s risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on mar...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملEnsemble of Example-Dependent Cost-Sensitive Decision Trees
Several real-world classification problems are example-dependent cost-sensitive in nature, where the costs due to misclassification vary between examples and not only within classes. However, standard classification methods do not take these costs into account, and assume a constant cost of misclassification errors. In previous works, some methods that take into account the financial costs into...
متن کاملExample-dependent cost-sensitive decision trees
Several real-world classification problems are example-dependent cost-sensitive in nature, where the costs due to misclassification vary between examples. However, standard classification methods do not take these costs into account, and assume a constant cost of misclassification errors. State-of-the-art example-dependent cost-sensitive techniques only introduce the cost to the algorithm, eith...
متن کامل